Our research focus

Identification of tumour immune evasion mechanisms

Cancer immune evasion is a major hurdle in for the success of current immunotherapies, both in the context of adoptive cellular therapy (ACT) and immune checkpoint blockade. Despite the clinical success of diverse immunotherapies, many patients do not respond or ultimately relapse, likely due to tumours evolving to escape sufficient recognition by the immune system. Although considerable progress has been made in understanding how cancers evade immunity, measures to counteract tumour immune escape are lacking. We employ cutting-edge screening mechanisms to identify tumour immune evasion mechanisms and avenues to sensitise tumour cells to T cell-mediated killing.

Genetic/epigenetic control of effective anti-tumour T cell responses

Despite the success of adoptive cellular therapy (ACT) in the context of haematological malignancies, response rates against solid malignancies are poor, likely due to tumour-associated immunosuppression and subsequent T cell exhaustion. Indeed, it is becoming clear that the failure of T cells to elicit a successful and long-term anti-tumour immune response is controlled by transcriptional, epigenetic and post-translational modifications. However, our current understanding of the molecules involved in these processes is limited. We use cutting-edge technology including in vitro and in vivo CRISPR screens, high throughput drug screens and novel single cell sequencing protocols to identify novel underlying molecular mechanisms leading to T cell dysfunction in cancer and identify mechanisms to improve T cell function in this context. We employ a variety of pre-clinical models of CAR T cell therapy and re-directed TCR T cell therapy to validate novel immunotherapy targets for translation into the clinic.

Identification of novel immunotherapy approaches.

High-throughput screening has been a staple in drug discovery in recent decades. Target-based drug discovery relies heavily on singular readouts such as reporter gene expression or perturbation of enzymatic activity in response to small molecule treatment. However, with a recent renewed focus on phenotypic based drug discovery, there is an increased interest in more comprehensive and less biased screening methods that combine aspects of both target-based and phenotypic screening, such as RNA-seq. To complement our genetic screens, we also perform high-throughput drug screens for agents that promote favourable states of T cell differentiation for anti-tumour immunity and agents that increase the immunogenicity of cancer cells. Importantly, identification of such agents would allow us to enhance current immunotherapy approaches.

Fast facts

Adoptive cellular therapy, also known as cellular immunotherapy, is a form of treatment that uses the cells of our immune system to eliminate cancer. Some of these approaches involve directly isolating our own immune cells and simply expanding their numbers and re-introducing into a patient, whereas others involve genetically engineering our immune cells (via gene therapy) to enhance their anti-cancer functions.

CD8+ T cells (often called cytotoxic T lymphocytes, or CTLs) are critical for immune defence against pathogens including viruses and bacteria, but also for detecting and killing cells that have become cancerous. When a CD8+ T cell recognises its antigen and becomes activated, it can directly kill pathogen infected cells or cancer cells through direct contact, but also release soluble factors called cytokines which alert other cells of the immune system.

CRISPR is a powerful tool for editing genomes, meaning it allows researchers to easily alter DNA sequences and modify gene function. CRISPR technology was adapted from the natural immune defence mechanisms of bacteria and archaea, species of relatively simple single-celled microorganisms.

Recent publications

AARC

CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory

DOI: 10.1158/2159-8290.CD-20-1554

1 October 2021

View abstract
Science Advances

SUGAR-seq enables simultaneous detection of glycans, epitopes, and the transcriptome in single cells

DOI: 10.1126/sciadv.abe3610

19 February 2021

View abstract
Science Advances

Tumor immune evasion arises through loss of TNF sensitivity

DOI: 10.1126/sciimmunol.aar3451

4 May 2018

View abstract

Our team

Meet our researchers

  • Dr Conor J Kearney - Head, Molecular Immunology Laboratory Publications
  • Ms Elizabeth Georges - Research Assistant
  • Mr Pengjin Wen – PhD student
  • Ms Lizzy Lijpers – PhD student
  • Tirta (Mario) Djajawi - Postdoctoral Research Fellow