Our research focus

Isolation and characterisation of circulating tumour cells

Liquid biopsies, which capture circulating tumour cells in the blood, are a useful, non-invasive way of monitoring tumour spread and drug response. Our laboratory studies the diversity and biological properties of cancer cells captured in blood. This helps improve the diagnosis of patients, predict drug response and, in the longer term, develop cancer treatments personalised to a patient’s specific cancer.  

Follow tumour progression using cellular tracking

Each cell collected from a patient’s tumour can be labelled with tags or ‘barcodes’, allowing us to determine which subpopulations of cells in the tumour contribute to metastasis, organ specificity and drug-resistance. We are particularly interested in the effect of different microenvironments or ‘niches’ on the survival of cancer cells and the progression of disease.

Test new drugs in advanced models of metastatic breast cancer

Our laboratory is interested in developing ways to test the effect of various drugs on the survival of circulating tumour cells or metastasis. In particular, we focus on testing the effect of new targeted therapies on metastatic progression.

Fast facts

Some cancer cells have the ability to spread in the body. They can invade locally to nearby lymph nodes, to the vasculature and distant organs. This process is called metastasis. The mechanisms by which cells are able to adapt to different microenvironment are still unknown, but it appears that only a few cells from a tumour will successfully grow in distant organs and cause symptoms.

Different tumour cells in a tumour can show distinct phenotypic profiles such as gene expression, proliferation, and metastatic potential.

Drugs which specifically block the proliferation, survival or invasiveness of cancer cells, by targeting specific cellular pathways.

Recent publications

Clinical & Translational Medicine

Single-cell RNA sequencing captures patient-level heterogeneity and associated molecular phenotypes in breast cancer pleural effusions

DOI: 10.1002/ctm2.1356

10 September 2023

View abstract
Communications Biology

Experimental and spontaneous metastasis assays can result in divergence in clonal architecture

DOI: 10.1038/s42003-023-05167-5

7 August 2023

View abstract
Nature Reviews Cancer

Mastering the use of cellular barcoding to explore cancer heterogeneity

DOI: 10.1038/s41568-022-00500-2

18 August 2022

View abstract

Our team

Meet our researchers

  • A/Prof Delphine Merino - Head, Tumour Progression and Heterogeneity Laboratory Publications
  • Jean Berthelet - Senior Postdoctoral Research Fellow Publications
  • Yunjian Wu - Postdoctoral Research Fellow
  • Farrah El-Saafin - Senior Research Assistant Publications
  • Caroline Bell - Research Assistant
  • Sreeja Gadipally - PhD Student
  • Sam Lee - PhD Student
  • Andrew Li - PhD Student
  • Eleanor Ritchie - PhD Student
  • Shakiba Momeni - Honours Student