Mammalian Protein Expression Facility

Mammalian Protein Expression Facility

This unique facility is located in a dedicated suite of cleanrooms and can produce small to large amounts of high quality recombinant proteins and antibodies for use in medical research.

Cell Line Development
Transient expression, stable expression, and isolation/enrichment of high producing clones can be performed.

Production Systems
A range of production systems are available depending on the scale of production required. Perfusion systems are able to produce material every two days ranging from tens of milligrams to several hundreds of milligrams per harvest. A proprietary biphasic approach to production is used during protein production in stirred tank bioreactors. Yields up to 4g/L of mAb in a GS CHO cell line can be achieved.

Purification and Product Characterisation
Production material is purified using a variety of chromatography techniques such as affinity, size exclusion and ion exchange. Operating procedures are in place to allow for flexibility to process materials ranging from milligrams to several grams of material.

Quality assessments are conducted through a combination of SDS-PAGE, size exclusion chromatography using HPLC, and binding kinetics using BIAcore.

Contact

If you would like to discuss opportunities to use our platform technologies and services, please contact:

Mark Frewin
Laboratory and Facilities Manager
P +61 3 9496 5299
M +61 434 242 518

Email

VECTRA Multi-Spectral Imaging Platform

VECTRA Multi-Spectral Imaging Platform

The Vectra multi-spectral immuno-histochemistry platform is the first of its kind in Australia. It allows researchers to more accurately define the immune microenvironment, and helps detect mechanisms a tumour may use to evade the immune system.Its acquisition was supported by a grant from the Ian Potter Foundation in collaboration with La Trobe University and the Peter MacCallum Cancer Centre.

The Vectra platform and its analysis software allows researchers to quantify cells which are positive for one or both of the molecules and to analyse their localisation within the cells (for example, in the membrane, cytoplasma or nucleus).

Contact

If you would like to discuss opportunities to use our platform technologies and services, please contact:

Mark Frewin
Laboratory and Facilities Manager
P +61 3 9496 5299
M +61 434 242 518

Email

Functionalities

The Vectra platform can simultaneously detect up to seven different proteins of interest on one FFPE-tissue slide using Opal chemistry and spectral un-mixing.

It has an integrated automated slide-loader for up to 200 slides, which can be loaded and scanned, fully automated by user-defined protocols. Pre-scans of whole tissue slides will be performed at 4x or 10x magnification (RGB) followed by high-power-field (HPF) imaging of regions of interest in the multispectral mode (20x or 40x magnification).

The multiplex IHC images lead to a comprehensive understanding of complex cellular interactions which is not accessible by other methods. Opal follows the standard IHC workflow using unlabelled primary antibodies, followed by the addition of anti-species-HRP conjugate and detection substrate. Opal fluorescent detection substrates bind covalently near the epitope, allowing subsequent removal of antibodies to clear the tissue for detection of the next target. The signal remains intact after antibody removal.

Localisation studies of proteins in cellular compartments, co-localisation of proteins and quantification of cells expressing single markers or marker combinations can be subsequently performed with specialised software available on several work stations at the ONJCRI.

Spatial relationships of cell types to each other and within the tissue context can be analysed using Spotfire software. Scanning of the slides and selection of tissue sections and areas of interest can be automated on the Vectra system and allows for review by a pathologist before analysis. Due to the TSA based signal amplification, primary antibody concentration can be reduced up to 100X and all markers of interest can be detected with antibodies raised in the same species.

Aperio AT2 Whole Slide Scanner

The Aperio AT2 is a high-volume microscope capable of digitalising histochemical stained slides. The Aperio AT2 has a capacity for up to 400 slides that can be scanned with a sustained rate of 50 slides per hour at 20 X. With high first scan success rate, your images will be uploaded to our microscopy server, allowing remote access for collaborative research teams worldwide.

Analysis can be performed using the Aperio ImageScope – Pathology Slide Viewing Software. This software contains integrated macros and algorithms for the analysis of many common pipelines for investigating your histochemical stained tissues. Image export is easily achieved, allowing free access to your datasets in your analysis software of choice.

BOND RX Fully Automated Research Stainer

The BondRX allows you to fully automate IHC, ISH, FISH, CTC and multiplexing staining experiments. Reduce your manual work to increase your efficiency and consistence with your staining experiments. The BondRX allows you to customise all steps in your staining protocol from baking and dewaxing, antigen retrieval to the length and temperature of your staining approach. The BondRX has a 30-slide capacity, with finished trays of 10 slides being capable of replaced continuously.  Up to three separate staining protocols can be run simultaneously.

The BondRX allows you to leverage established protocols and reagents or develop completely custom and reproducible staining experiments with your own novel agents. The BondRX dramatically reduces the time required to perform your experiment. A bench run seven-plex experiment would require approximately 5 days of hands-on time manual time but with the BondRX this is reduced to a reproducible and consistent ~17 hours.


The ACRF Centre for Translational Cancer Therapeutics and Imaging

The ACRF Centre for Translational Cancer Therapeutics and Imaging

This Centre was established for medical research and preclinical investigations and houses a range of advanced imaging technologies and platforms including:

Contact

If you would like to discuss opportunities to use our platform technologies and services, please contact:

Mark Frewin
Laboratory and Facilities Manager
P +61 3 9496 5299
M +61 434 242 518

Email

Explore the Translational Cancer Therapeutics Lab

PET MRI imaging

By combining a high-performance PET system and compact MRI technology, NanoScan® PM PET/MRI provides preclinical whole body soft tissue images with detailed quantitative imaging data within just one study. The PET camera offers quantitative 3D spatial resolution at 700 µm combined with a uniquely large field-of-view. The 1 Tesla permanent magnet for MRI provides 100 µm resolution with advanced sequences and ensures robust imaging across a broad range of biological applications including:

  • Oncology
  • Tumour biology
  • Stem cell investigations
  • Regenerative medicine
  • Neuroscience and receptor studies
  • Cardiology
  • Immunology and inflammation
  • Multimodal contrast agent development
  • Animal model development and phenotyping
  • Nephrology
  • Pharmacokinetics
  • PET development of radiotracers

SPECT CT imaging

The NanoSPECT/CTTM is an in-vivo molecular imaging system suitable for use with small animals and unifies functional (SPECT) and anatomical (CT) imaging procedures for preclinical investigations. With 250μm 3D SPECT and 30μm CT spatial resolution, exceptional quantification is permitted with an accuracy over 97%.

The system enables the examination of bio-chemical processes in healthy and disease models (including cancer, diabetes and stroke). It determines the localisation of radio-labelled compounds used as probes for the disease state, and monitors the efficacy of interventions or therapies. In living subjects, the effect of drugs in development can be monitored and compared in real time and at multiple time points within the one subject. Drug localisation as well as uptake can be quantified and visualised from the data collected.  The system is also suitable for monitoring genetic modifications and gene-therapeutic healing procedures using appropriate preclinical models.

IVIS spectrum imaging

The IVIS® Spectrum is a versatile and advanced in vivo imaging system, which uses a novel patented optical imaging technology to allow non-invasive longitudinal monitoring of disease progression, cell trafficking and gene expression patterns in living animals. High efficiency filters and spectral un-mixing algorithms take full advantage of bioluminescent and fluorescent reporters across blue to near-infrared wavelengths. It also offers single-view 3D tomography for both fluorescent and bioluminescent reporters, which can be analysed in an anatomical context using a Digital Mouse Atlas or registered with the IVIS multimodality module to other tomographic technologies such as MR, CT or PET.

For advanced fluorescence pre-clinical imaging, the IVIS Spectrum can use either trans-illumination (from the bottom) or epi-illumination (from the top) to illuminate in vivo fluorescent sources. 3D diffuse fluorescence tomography can be used to determine source localisation and concentration using the combination of structured light and trans illumination fluorescent images. The instrument is equipped with 10 narrow band excitation filters (30nm bandwidth) and 18 narrow band emission filters (20nm bandwidth), which assist in significantly reducing autofluorescence, via the spectral scanning of filters and the use of spectral unmixing algorithms. In addition, the spectral unmixing tools allow the researcher to separate signals from multiple fluorescent reporters in the same animal.


Research Platforms

Our research services

All research activities at the Olivia Newton-John Cancer Research Institute are enhanced and supported by outstanding platform technologies, facilities and technical expertise.

We also have a number of platform technologies and services which can be utilised by other Institutions and organisations. These include:

Contact

If you would like to discuss opportunities to use our platform technologies and services, please contact:

Mark Frewin
Laboratory and Facilities Manager
P +61 3 9496 5299
M +61 434 242 518

Email